
Number 2647

IDDQ Testing and Standby Current Testing
with Series 2600 System SourceMeter®
Instruments

Application Note
Series

Introduction
Manufacturers of CMOS integrated circuits and battery-powered
electronic products need to measure the quiescent (standby)
power supply current to verify quality during production test-
ing. The process of measuring the leakage currents of CMOS
integrated circuits or finished products that contain CMOS ICs is
known as IDDQ testing. This test requires measuring the current
of the VDD power supply while the IC is in the quiescent state. It
is done to check for shorted gate oxide and other IC defects that
may cause a failure over time. Similarly, the power supply cur-
rent of battery-powered products that contain bipolar transistors
or other ICs can be measured while these ICs are in a quiescent
mode. These types of products include portable battery-pow-
ered consumer electronics, such as cellular phones, pagers, and
notebook computers, as well as implantable medical devices,
such as pacemakers and defibrillators. The goal of these tests is
to ensure the products satisfy the consumer demand for longer
operating periods from a given level of battery charge as well
as operational quality. Testing must be performed as quickly as
possible to ensure acceptable throughput, but also thoroughly to
ensure product quality.

When choosing a measurement instrument to perform these
tests, two of the most important considerations are speed and
accuracy. However, when measuring small currents, sometimes
it’s necessary to make a trade-off between speed and accuracy,
so custom hardware is often designed to perform these tests.
Custom hardware may require lengthy design time and isn’t
always easy to maintain, whereas commercially available test sys-
tems are typically easy to use, readily available, and economical
in terms of rack space.

Another Keithley application note (#804) describes how to
perform IDDQ testing and quiescent-current measurements using
Series 2400 SourceMeter instruments. This application note
describes how to perform such tests using Keithley’s new Series
2600 System SourceMeter instruments. This next-generation
SourceMeter family includes the single-channel Model 2601 and
dual-channel Model 2602. With a built-in Test Script Processor
(TSP™) and a new inter-unit communication interface (TSP-
Link™), Series 2600 instruments offer even more power and flex-
ibility than their predecessors. Keithley can provide an example
test script that can perform approximately 2500 IDDQ measure-
ments per second. An electronic copy of this script, which works
with both Series 2600 models, is available for download from
Keithley’s web site, www.keithley.com. A test script to test the
current drain of a cellular phone is also available via Keithley’s
web site.

IDDQ Testing of CMOS ICS

Test Description
This test involves measuring the current draw of the VDD power
supply of a CMOS IC when the inputs are at VDD or VSS and the
outputs are not connected. Figure 1 is a diagram of a test setup
for a single CMOS inverter. In this example, the Model 2601/2602
is used to source the supply voltage (VDD) and to measure the
resulting quiescent current.

Input Output
A

Model 2601/2602

HI

LO

VDD

VSS

IDD

Figure 1. Measuring the quiescent current of a single CMOS inverter

While this example shows an IC with a single gate, many
ICs have thousands of gates. Usually, a predetermined series of
test vectors (i.e., a pattern of logical ones and zeros applied to
the inputs) is used to reduce the number of quiescent current
measurements that must be made to ensure that all the gates are
toggled or the desired IC logic states are tested.

A constant voltage is applied to the VDD pin(s) of the IC
throughout the test to keep the IC in a functional mode. A good
CMOS component draws high current from the VDD supply only
when switching; in the quiescent state, the current draw is fairly
low. Depending on the type of defect involved, the IDDQ of a bad
IC will be much higher. To make the measurements, a test vector
is applied to the inputs of the IC, and after a specified settling
time, the resulting current is measured. After a measurement is
taken, it is compared to a preset threshold to determine if the
part passes or fails. This threshold is often set at the microamp
or nanoamp level and is usually determined by a statistical analy-
sis of IDDQ for several good ICs. As devices continue to become
more and more complex, IDDQ testing can’t always be performed
using a simple threshold test. In some cases, it may be necessary
to perform a statistical analysis of the IDDQ data of the device-
under-test (DUT) to determine pass/fail status reliably. Series
2600 SourceMeter instruments are well suited for both of these
test scenarios.

2647 IDDQ App Note.indd 1 9/7/05 11:54:46 AM

Test System Configuration
Figure 2 is a Series 2600-based system for
testing the IDDQ for CMOS ICs.

As Figure 2 shows, the HI and LO
terminals of the 260X are connected to
the VDD and VSS terminals of the CMOS
IC. The 260X supplies a constant DC volt-
age to the IC throughout the test. The
inputs of the IC are connected to a “digi-
tal test system” that ensures all the gates
are toggled or the desired logic states
are achieved. It is assumed that this test
system also handles the mechanical posi-
tioning and probing of the DUT, and the
disposition of good and parts.

The 260X can be controlled like a typi-
cal programmable instrument by sending
it discrete commands via the IEEE-488
(GPIB) or RS-232 bus. Both communica-
tion interfaces are standard on the 260X.
However, for maximum throughput, a
complete test script can be downloaded
to the instrument’s Test Script Processor,
which can then perform the entire test
virtually independent of the host PC (sys-
tem controller). When the 260X is con-
nected to the host controller via GPIB, it
can actually control another instrument
via its RS-232 port. Thus, the 260X could
send ASCII command strings to the digital
control system and receive data from it if
appropriate.

To enhance speed further, external
hardware triggers are used to synchro-
nize the IDDQ measurements with the
application of the test vectors. The 260X
is equipped with 14 digital input/output
lines, which can be used for digital con-
trol (pass/fail status in this example) or as
input or output trigger lines. The digital
test system triggers the 260X when a vec-
tor has been sent to the CMOS IC. After
the IDDQ value is evaluated, the 260X
returns a trigger to the digital test system,
which generates another test vector. This
process is repeated until all test vectors
are generated or the IC fails the test.
When the test is finished, the 260X writes
a predetermined bit pattern to its digital
I/O (DIO) port to indicate the pass/fail sta-
tus of the part to the digital test system.

In cases where the pass/fail status
of an IDDQ test is determined simply by

PC

GPIB

Digital Test System

SMU A

260X
SourceMeter

SMU B

Digital I/O

CMOS
Device Under Test

Triggers and
Pass/Fail Status

Test
Vectors

A
IDDQ Inputs

VDD

VSS

HI

LO

Figure 2. IDDQ test system configuration

comparing the source current to a thresh-
old level, there are at least two ways the
260X can perform such a measurement
and inspection. If the actual value of IDDQ
is required, then the 260X can measure
the current and compare the values to
the threshold. If the current exceeds the
threshold level, the test fails; otherwise,
it passes. The 260X can return any or
all of the measured values and pass/fail
status to the host PC as required. If the
actual value of IDDQ is not required, then
the 260X can be configured as a digital
comparator for higher test throughput.
Set the current compliance limit of the
260X to the threshold value. Apply the
test vector and determine the compliance
state of the 260X. If the current draw tries
to exceed the limit, the 260X it will go
“in compliance” and clamp the current
at the limit. When this condition occurs,
the IDDQ test fails. If the current does not
exceed the threshold, the unit won’t go
into compliance and the test passes. A
measurement isn’t required to determine
the compliance state of the instrument, so
this latter method is generally faster than
the former.

As previously mentioned, IDDQ test-
ing of complex devices can’t always be
performed using a simple threshold test.
In such cases, it may be necessary to
perform a statistical analysis of the IDDQ
data for the DUT to determine pass/fail
status reliably. The host PC could do this
after retrieving all of the test data from

the 260X. However, data transfer is a rela-
tively slow process that can significantly
impact test throughput. This can be a high
price to pay if there is no requirement
to archive the readings. The test script
language used to program the Test Script
Processor includes a math library and
other capabilities that make it possible
to perform extensive analyses within the
instrument, thereby eliminating the need
to transfer all of the data. This is further
facilitated by the deep memory of the
260X. Each SMU channel has two non-
volatile buffers, which can each hold up to
100,000 readings. Volatile memory is also
available for even more data storage.

Remote Operation and Using
the Test Script Processor
Before getting into an actual test example,
let’s discuss the new instrument feature
that will be used for the test applica-
tion. Series 2600 System SourceMeter
instruments have a powerful embedded
computer or Test Script Processor, which
offers capabilities never seen before in
rack-and-stack instruments. A complete
test program (script) can be downloaded
to the TSP. As with other common pro-
gramming languages, a well-designed
script creates reusable functions or sub-
routines, which can be called by a test
executive or other functions. It’s possible
to pass parameters to these functions. In
the IDDQ test example presented here, a
single function is created to perform the

2647 IDDQ App Note.indd 2 9/7/05 11:54:48 AM

IDDQ test, inspect the data, and return the
results. This function also handles all of
the trigger synchronization and other digi-
tal I/O between the digital test system and
the 260X. This function can be called by
the system controller PC or from another
test function that resides in the TSP. The
script, which creates the function, must
be downloaded to the 260X using either
GPIB or RS-232. When the script is first
downloaded, it is stored in volatile memo-
ry. However, it can be saved to nonvolatile
memory if desired. The script must be run
to create the test function. This function
always resides in volatile memory, which
means it must be recreated whenever
power is cycled. The creation script can be
explicitly run at any time or it can be set
to run automatically at power-up. When
the system controller PC calls the func-
tion, the 260X will execute the complete
test sequence for the specified number of
parts without any further intervention by
the system controller, thereby saving com-
munications time and increasing system
throughput.

A script can be created using any text
editor. However, Keithley provides a free
application called Test Script Builder,
which can be used to create, debug, and
organize scripts. Test Script Builder can
download scripts to volatile instrument
memory and save them in nonvolatile
instrument memory. It can also run the
scripts. Scripts can also be loaded and
run using applications created in other
languages, such as Visual Basic®, Visual
C/C++®, or LabVIEW®. Once the script is
in memory, it can even be run from the
front panel.

All measurements, calculations and
inspections can be performed by the
260X, so it’s unnecessary to send data to
the host computer (system controller) for
processing. However, it’s possible to do
so if desired for recordkeeping or other
purposes. As seen in the example script,
“print” statements are used to send data
back to the host computer. The data listed
in the print statement is placed in the
instrument’s output queue for retrieval by
the host.

Application Example 1: IDDQ test
In this example, 2000 test vectors will be sent to a CMOS IC that must be powered with
a constant 2V. A threshold level will be used for this example and a quiescent current
of 1µA or less will be considered an acceptable current. The actual measurements need
not be retained, so only the compliance state of the 260X will be inspected. To ensure
acceptable production throughput, measurements must be made as quickly as possible,
preferably in one second or less. The measurement instrument must send a pass or fail
indication to the digital test system.

Solution: A TSP script, which creates the function “IddqTest(smu, ndevices, nvec-
tors),” was developed. Portions of this script are listed below. A complete copy of the
script can be downloaded from Keithley’s web site, www.keithley.com. The script can
be viewed, edited, loaded, and executed using Test Script Builder. An actual “digital
test system” wasn’t available, so the speed performance of the function was evaluated
by a wrap around test using the trigger lines that would normally synchronize the IDDQ
measurement with the application of the test vector. The input trigger line of the 260X
was connected to its output trigger line. Under this condition, the 260X was able to
execute the IDDQ test at a rate of approximately 2500 vectors per second.

The function definition is listed below. The actual script includes many more com-
ments in addition to those shown here. Comments are identified by a double dash (--).
Several local variables are declared within the function. All variables are global unless
they are explicitly declared as local. The function performs some initial instrument
setup before it executes the actual test. This setup includes setting the 2V source level
and 1μA compliance limit, selecting the voltage sense mode, and configuring the trigger
lines. The example uses local (two-wire) voltage sensing. It is straightforward to change
it to remote (four-wire) sensing.

function IddqTest(smu, ndevices, nvectors)
	 -- Pass parameters:
		 -- smu is the SMU to use for the test (A or B)
		 -- ndevices is the number of ICs to test
		 -- nvectors is the number of vectors used for Iddq test sequence	
	
	
	 -- Default to smua if no smu is specified.
	 if smu == nil then smu = smua end

	 -- ***** Declare and initialize temporary variables *****

	 -- Variables to hold boolean status of "wait for triggers"
	 local l_sot_received
	 local l_trig_received

	 -- Abort test flag (boolean)
	 local l_abort_test

	 -- Variables to hold timing information
	 local l_start_time, l_stop_time, l_elapsed_time

	 -- Counter variables
	 local l_i, l_nvectors_remaining
	
	 -- Table used to simulate bins of a component handler
	 local l_bins = {0,0} -- Initially set all bins to zero

	 -- *************** Perform initial setup of the 260X ***************

	 smu.reset()	 -- Reset SMU to default settings
	 smu.source.func = smu.OUTPUT_DCVOLTS	 -- Source DCV
	 smu.source.rangev = 2	 -- Will automatically select 6V range
	 smu.source.levelv = 2	 -- Source 2V
	 smu.source.limiti = 1E-6	 -- Set current compliance to 1uA
	 smu.sense = smu.SENSE_LOCAL	 -- Use smu.SENSE_REMOTE for 4-W sensing

2647 IDDQ App Note.indd 3 9/7/05 11:54:48 AM

	 -- Configure Digital I/O Port
	
	 digio.writeprotect = 0	 -- Unprotect all bits
	 digio.writeport(30)	 -- Set bits/lines 2, 3, 4 and 5 high
	 digio.writeprotect = 30	 -- Write protect trigger lines 2, 3, 4 and 5
	
	 -- Configure trigger line 2 (input SOT)
	 digio.trigger[2].mode = digio.TRIG_FALLING	 -- Detect falling edge
	 digio.trigger[2].clear()				 -- Clear "latched" triggers
	
	 -- Configure trigger line 3 (output EOT)
	 digio.trigger[3].mode = digio.TRIG_FALLING	 -- Output TTL-low pulse
	 digio.trigger[3].pulsewidth = 10E-6			 -- Guaranteed minimum pulse
	
	 -- Configure trigger line 4 (input TRIG when test vector is set)
	 digio.trigger[4].mode = digio.TRIG_FALLING	 -- Detect falling edge
	 digio.trigger[4].clear()				 -- Clear "latched" triggers
	 -- Configure trigger line 5 (output TRIG after Iddq measure is complete)	
	 digio.trigger[5].mode = digio.TRIG_FALLING	 -- Output TTL-low pulse
	 digio.trigger[5].pulsewidth = 10E-6			 -- Guaranteed minimum pulse						
		
	 -- Clear the error queue
	 errorqueue.clear()
		
	 -- ************************* RUN TEST *************************

	 -- Display some status info on front panel	
	 display.clear()
	 display.setcursor (1,1)
	 display.settext(" Test In Progress")
	 display.setcursor (2,1)
	 display.settext(" Testing "..tostring(ndevices).." Parts")		
	 timer.reset()
	 l_start_time = timer.measure.t()

	 for l_i = 1, ndevices do
	
		 -- Wait for SOT indicating part is ready to test; timeout after 10ms
		 l_sot_received = digio.trigger[2].wait(0.01)

		 -- Turn ON SMU output; stays on until test is completed		
		 smu.source.output = smu.OUTPUT_ON
		
		 -- Initialize abort flag and vector counter
		 l_abort_test = false
		 l_nvectors_remaining = nvectors
		
		 digio.trigger[4].clear()	 -- Clear any "latched" triggers
		
		 -- Repeat test until no more test vectors or test fails
		 while (l_nvectors_remaining >0) and not(l_abort_test) do

			 -- Wait for trigger from digital test system; timeout after 10ms
			 l_trig_received = digio.trigger[4].wait(10E-3)
	
			 -- delay(0.0005)	 Insert delay here if settling time is required

			 -- Check compliance state; returns boolean true or false
			 l_incompliance = smu.source.compliance

			 -- If source is in compliance, then fail part and abort test
			 if l_incompliance then
				
				 digio.writeport(32)	--Write FAIL pattern to DIO	
				 l_bins[2] = l_bins[2]+1	 -- "Bin" the part
				 l_abort_test = true	-- Set abort test flag TRUE to exit loop	
		
			 else	 -- Otherwise part is still good so continue test

				 digio.trigger[5].assert()	 -- Output trig to "dig test system"
				 l_nvectors_remaining = l_nvectors_remaining – 1	 -- New count			
			 end --if

2647 IDDQ App Note.indd 4 9/7/05 11:54:49 AM

		 end --while
		 -- If did not abort test, then part is GOOD
		 if not(l_abort_test) then
	
			 digio.writeport(64)		 -- Write PASS pattern to DIO
			 l_bins[1] = l_bins[1]+1		 -- "Bin" the part
						
		 end --if
		
		 --Turn OFF SMU output
		 smu.source.output = smu.OUTPUT_OFF

		 -- Output EOT trigger
		 digio.trigger[3].assert()
		
		 -- Clear binning code (set all unprotected bits to zero)
		 delay(0.0001)	 -- Delay in seconds before clearing binning code
		 digio.writeport(0)

	 end --for	

	 l_stop_time = timer.measure.t()
	 l_elapsed_time = l_stop_time - l_start_time

	 -- Display throughput rate and final binning results on 260X front panel
	 display.clear()
	 display.setcursor (1,1)
	 display.settext("Parts per sec = "..tostring(ndevices / l_elapsed_time))
	 display.setcursor(2,1)
	 display.settext("Bin Count: Good= "..l_bins[1].." Bad= "..l_bins[2])

	 -- Write speed & binning results to output queue for retrieval by host PC
	 print("Elapsed time = "..l_elapsed_time.." sec")
	 print("Parts per sec = "..tostring(ndevices / l_elapsed_time))
	 print("Bin Count: Good Parts: "..l_bins[1].." Bad Parts: "..l_bins[2])
	
end --function IddqTest

Running the example IDDQ test script using Test Script
Builder or another application only creates the function; it
doesn’t perform any tests. Executing the IDDQ test requires call-
ing the IddqTest() function. For example, to test 100 devices
using 2000 test vectors, the system controller must send the
command “IddqTest(smua, 100, 2000).” In response to the func-
tion call, the 260X waits for a Start-of-Test (SOT) trigger from the
external digital test system for each DUT. When the 260X gets
the SOT, it turns on the SMU output and waits for a trigger from
the digital test system. The digital test system applies a test vec-
tor to the inputs of the IC and then sends a trigger to the 260X.
Upon receipt of the trigger, the 260X waits a predetermined
settling time and then checks its compliance state. If it is NOT
in compliance, that particular IDDQ test passes and the 260X
outputs a trigger to the digital test system and loops around and
waits for the next vector to be applied. This process continues
until all test vectors are completed or the instrument goes into
compliance. If all test vectors are completed successfully, the
260X writes a decimal 64 to its DIO port to indicate a PASS to the
digital test system. The table element “l_bins[1]” is incremented
by one to simulate a part being binned. The 260X then outputs
an end-of-test (EOT) trigger to the digital test system, indicating
that the IDDQ test sequence for the DUT has been completed.

If the 260X goes into compliance, the IDDQ test fails. When
an individual test fails, the 260X uses an “immediate” binning

scheme, which means it immediately writes a FAIL bit pattern
(decimal 32) to the digital test system, aborts the remainder of
the test sequence and then outputs an EOT trigger to the digital
test system. After the FAIL pattern is output, the table element
“l_bins[2]” is incremented by one to simulate the binning pro-
cess. The 260X clears the PASS/FAIL bit pattern a predetermined
time interval after it issues the EOT trigger by writing a decimal
0 to its DIO port. If there are more DUTs to be tested, the 260X
loops around and waits for the next SOT trigger. Once all tests
are complete, the throughput rate and binning results are dis-
played on the 260X front panel; they are also printed to the out-
put queue for retrieval by the system controller.

Standby Current Testing

Test Description

This test involves measuring the current of a battery-powered
product while it is in a standby state. A typical test setup is
shown in Figure 3.

In this example, the HI and LO terminals of the 260X are
connected to the HI and LO battery terminals of the product to
be tested. The 260X’s voltage source simulates the internal bat-
tery of the product and its ammeter measures the current while
the part is in a standby mode. This measurement is compared to
a specified limit to determine if the product passes or fails. An

2647 IDDQ App Note.indd 5 9/7/05 11:54:49 AM

acceptable current is often in the milliamp
or microamp range, but can vary greatly
depending on the application.

Test System Configuration
Figure 4 is a block diagram of a 260X-
based standby current production test
system. The battery-powered product is
placed in a test fixture connected to the
260X. When triggered, the 260X outputs
a voltage and measures the resulting cur-
rent. As Figure 4 illustrates, the Model
260X has both an IEEE-488 and RS-232
communication ports, as well as a digital
I/O port. When the 260X is connected to
the host PC via GPIB, it can communi-
cate directly with the handler via RS-232.
The digital I/O port can also send signals
directly to and receive signals from the
handler. The measured current of the
DUT is compared to limit values that have
been preset in the 260X. A TTL level sig-
nal generated from the 260X’s digital I/O
port indicates whether the device passed
or failed the tests. Based on the received
signal, the automated handler will route
the device to the appropriate bin or other
location.

Application Example 2: Testing the
current draw of a cellular phone
In this application, the 260X takes the
place of the cellular phone’s rechargeable
battery and measures the current while
the phone is in the “talk,” “standby,” and
“off” modes. A 4.5V test voltage is used
for all three measurements. For this test,
a cellular phone fails if the measured cur-
rent exceeds the threshold levels for the
given mode. Each threshold current has its
corresponding pass and fail bit patterns:

Mode
Threshold

Current
Pass Bit
Pattern

Fail Bit
Pattern

Talk 400mA 0001 0010
Standby 10mA 0001 0100

Off 100μA 0001 1000

Solution: A TSP script that creates
functions to test the current draw of a
cell phone was developed. The script is
similar to one for the IDDQ test, except the
source current is actually measured and
inspected instead of simply using the com-
pliance as the threshold limit. A complete
copy of the script can be downloaded
from Keithley’s web site, www.keithley.
com. It can be viewed, edited, loaded and
executed using Test Script Builder.

Equipment List
The following equipment is required to
assemble the test systems described in
this application note and run the example
scripts available from Keithley:

1.	 Keithley Model 2601 or 2602
SourceMeter instrument

2.	 “Digital test system” and/or component
handler with test fixture

3.	 IEEE-488 (GPIB) Interface Card
(KUSB-488, KPCI-488 or equivalent)

4.	 Keithley 7007 IEEE-488 interface
cables

5.	 Custom DB-25 digital I/O handler
interface cable to interface the instru-
ment to the digital test system and/or
handler

6.	 Test leads to connect the instrument to
the test fixture

Alternative Solutions
The 260X ammeter can measure current
from 3A full scale to 100nA full scale
with 10ppm resolution on any range. If
greater current resolution is desired, an
instrument with a more sensitive ammeter
must be used. Examples are the Model
6430 Sub-Femtoamp Remote SourceMeter
instrument and the Model 236, 237 and
238 Source-Measure Units. However, due
to the greater sensitivity of these instru-
ments, the test will run more slowly than
when the 260X is used. If currents greater
than 3A must be measured, the Model
2440 5A SourceMeter instrument can be
used.

Another alternative solution is to use a
readback power supply for both sourcing
voltage and measuring current. However,
the readback resolution of most program-
mable sources is in the milliamp range, so
they can’t be used for low current tests. In
addition, these supplies often have sense
lines with relatively low input impedance
and correspondingly high current (micro-
amp range), which can affect measure-
ment accuracy.

A
Model 2601/2602

HI

LO

+

–

(Battery
removed
for test)

Battery-operated
electronic product

Figure 3.	 Testing the standby drain current of a battery-powered electronic product

PC GPIB
Automatic Handling System

RS-232

SMU A

260X SourceMeter

SMU B

Digital I/O

Test Fixture

Digital I/O
Mechanical
ConnectionControl &

Triggers

DUT
Test Leads

Figure 4.	 Block diagram of a 260X-based standby current production test system.

2647 IDDQ App Note.indd 6 9/7/05 11:54:51 AM

Test System Safety
Many electrical test systems or instruments are capable of meas-
uring or sourcing hazardous voltage and power levels. It is also
possible, under single fault conditions (e.g., a programming error
or an instrument failure), to output hazardous levels even when
the system indicates no hazard is present. These high voltage and
power levels make it essential to protect operators from any of
these hazards at all times. Protection methods include:

•	 Design test fixtures to prevent operator contact with any haz-
ardous circuit.

•	 Make sure the device under test is fully enclosed to protect
the operator from any flying debris. For example, capacitors
and semiconductor devices can explode if too much voltage or
power is applied.

•	 Double insulate all electrical connections that an operator
could touch. Double insulation ensures the operator is still
protected, even if one insulation layer fails.

•	 Use high reliability, fail-safe interlock switches to disconnect
power sources when a test fixture cover is opened.

•	 Where possible, use automated handlers so operators do not
require access to the inside of the test fixture or have a need
to open guards.

•	 Provide proper training to all users of the system so they
understand all potential hazards and know how to protect
themselves from injury.

It is the responsibility of the test system designers, integra-
tors, and installers to make sure operator and maintenance per-
sonnel protection is in place and effective.

For Further Reading
D. Leslie, “QTAG: The Evolution of a Standard Monitor: A
Progress Report,” Evaluation Engineering, pp 26-32, Oct. 1995.

M.J. Riezenman, “Technology 1996: Test & Measurement,” IEEE
Spectrum, pp. 65-69, Jan. 1996.

S.S. Sabade and D.M. Walker, “IDDX-based Test Methods: A
Survey,” ACM Transactions on Design Automation of Electronic
Systems, Vol. 9, No. 2, pp 159-198, April 2003.

J.M. Soden and C.F. Hawkins, “IDDQ Testing and Defect Classes
— A Tutorial,” in Proc. of Custom Integrated Circuits Conf, 1995,
pp. 633-642.

2647 IDDQ App Note.indd 7 9/7/05 11:54:51 AM

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 	 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168
		 1-888-KEITHLEY (534-8453) • www.keithley.com	
© Copyright 2005 Keithley Instruments, Inc.		 No. 2647
Printed in the U.S.A.		 09053KGW

2647 IDDQ App Note.indd 8 9/7/05 11:54:51 AM

